Chapter 4

Statistical Modeling

4.1 PDF Modeling Introduction and Notation

The probability density function (PDF) of a random variable (RV) X is defined by

() é%iné Pr{z —4§/2 <5X < x+6/2}.

It is called a density function because it is the ratio of probability mass to differential area (or volume). Note that a
particular value of X is written in lower case x. The PDF p(z) is regarded as a function of the particular value x.
When a different RV is used, for example p(z), the meaning of the function p( ) changes to that defined for the RV Z.
When necessary, for example in the expression p(7'(x)), we use a subscript. For example, when z = T'(x), we would
write p,(T'(z)) to make it clear that p( ) is the PDF of RV Z. For multi-dimensional vectors written in bold notation,
for example x € R”, the meaning of the density is extended to a density with respect to a differential volume in the
P-dimensional space.

The simplest way to estimate the probability density of data is by histogram. A histogram is obtained by dividing the
space of the RV into “bins”, then counting the number of occurrences of the training data in each bin. A second step of
smoothing or curve-fitting can be used to avoid the effects of random error. A method of PDF estimation that has become
popular is that of Gaussian mixtures (GM). This can be regarded as the process of curve-fitting to a histogram where the
curve is constrained to be a sum of positive Gaussian-shaped functions (modes or kernels), each with a different mean and
variance. It also has the statistical interpretation of a mixture density - where each sample of the RV is regarded as having
been a member of a sub-class corresponding to each mode. We will devote Section 4.3 to GM PDF estimation.

Multidimensional data, x € R, can be modeled by a multidimensional GM. However, when data consists of K
samples of dimension P, it is not necessary or even desirable to group all the data together into a single K x P-dimensional
sample. In the simplest case, all K samples are independent and we may regard them as samples of the same RV. Normally,
however, they are not independent. The Markovian principle assumes consecutive samples are statistically independent
when conditioned on knowing the samples that preceded it. This leads to an elegant solution, the hidden Markov model
(HMM), which employs a set of M PDFs of dimension P. The HMM regards each of the K samples as having originated
from one of M possible states and there is a distinct probability that the underlying model “jumps” from one state to
another. We discuss the HMM, which uses GM to model each state PDFs, in section 4.4.

We discuss additional PDF models in the last section.

4.2 When isa PDF estimate good?

4.3 PDF Estimation using Gaussian Mixtures
This section is concerned with the general PDF estimation problem. Let p(z) be the PDF of z which must be estimated

from training samples. If p(z) is continuous, it may be approximated to arbitrary accuracy by any kernel-based estimator
[35], such as the method of Gaussian Mixtures (GM) [36] given enough terms.

1



2 CHAPTER 4. STATISTICAL MODELING

431 Gaussian Mixtures
The GM form of the PDF for z € R’ is given by

L

p(z) =Y i N(z, p;, i) .1

=1
where )
Na s B = ) 72 [ e { - (- )| B0 (2w}

The L mixture components are called modes. The GM parameters are denoted A = {«;, p;, X;}. The most commonly
used method for finding the maximum likelihood estimate of the parameters from a training set is the E-M algorithm [36],
[37].

4.3.2 Gaussian Mixturesand the E-M Algorithm

The EM algorithm is an effecive way to perform maximum likelihood (ML) estimation when the data PDF can be easily
maximized if a certain set of unknown parameters are known. These “unknown” parameters, or missing data, are the
mode assignments. The mode assignments can be understood if we assume that each data sample from the Gaussian
mixture had been produced by exactly one of the modes. The mode assignment for sample 7 is denoted k,, and k denotes
a particular set of assignments k = {k1,k2...kn}.

Derivation of the EM Algorithm for GM

Let X = {x1,X2...Xx} be a collection of data. The Q-function is defined as the expected “complete” log-PDF where the
expectation is carried out over the conditional distribution of the “missing data”, given X, using the current best estimate
of the PDF parameters A, and the log-PDF is written in terms of the new values of the parameters to be estimated, A’:

Q(A, A) £ Egxia{log p(X, k; A')} =) p(k|X; A)log p(X, k; A).
k
Expanding,
QAN = 3o pkIX5A) 3o, log p(xn, kn; A')
>on 2k P(k[X5A) log p(x, knj A')

= D0 2k 2, Plkn,ka|X5A) log p(xn, kn; AY),

where k7 are are the assignments not associated with sample n. The inner summation is a marginalization

> plkn, ka X5 A) = p(kn|X; A).

kn

Thus,
Q(A,A)

Son 2ok, P(ka|X;A) log p(xn, kns AY)
Zn an p(kn|xn;A) IOg p(XnakrﬁA/)

= Zn an Wk ,n log p(Xn, kn; A/),
where the conditional model probabilities w; ,, are defined as

p(i, Xn) _ p(xn|i) p(Z) _ N(Xna s Ez) (07
p(xn) ij(xnlj) p(4) ZjN(Xnaujazj) aj.

The maximization of A’ can be carried out on the quantity

L(A/) = Z Z Vn Wi,n log p(xn,i;Al),

Win é p(ilxn) -
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where we have added data weights, ~,,, which define a probabilistic weights for each data sample. This could be inter-
preted as adjusting the influence of a training sample as though sample n was replicated +,, times, or can be thought of as
the probabilistic certainty that sample 7 is indeed valid. By collecting ,, and w; ,, together into a quantity w; ,,, we have

L) =" winlog p(xn,i;AY), 4.2)

n K3

where

Win = Yn Win.

The algorithm in Table 4.1, maximizes (4.2) over A’ at each iteration. While correct, is representative only. Actual
computation requires careful attention to numerical issues which are discussed below.

4.3.3 Implementation Overview

In the sections that follow, we discuss the subtleties associated with practical implementations of the E-M algorithm. We
also discribe a complete MATLAB library for training, evaluating, and visualizing PDF’s of high dimensions. The Gaus-
sian mixture parameters are organized into a structure. The GPARM structure for feature dimension DIM with NMODES
modes has the form shown in Table 4.2. To illustrate the use of the structure in MATLAB, if gparm is the name of the
Gaussian mixture parameters, then the mixing weight of the third mode is accessed as gpar mnodes(3) . wei ght

A vector containing all the weights is created as follows: Ws = [gparmnodes. vei ght]’ , whereupon WS is
a NMODE-by-1 vector of mixing weights. The meaning of each parameter in the structure will be described. The
correspondence between the mathematical symbols and the MATLAB variables are tabulated in Table 4.3. Some of
these symbols are already defined. The rest will be defined later. The E-M algorithm of Table 4.1 is implemented by
subroutine gniX _step. m . Training can be accomplished by calling gnix _step.m repeatedly. There are, however,
subtleties having to do with how the GM is initialized and how the number of modes is chosen. Modes can be added or
removed during the training process. The subtleties are described in the following sections. In the software, the subroutine
gnix _trainscript.m  handles the details.

To illustrate the PDF estimation problem, we will use some 3-dimensional features from a mysterious source.
Samples of the feature vector z = {z1,29,235} were used as training data and were stored in variable datal ,
which is of size 3 by K, where K is the number of independent samples. Each row of the matrix stores the samples
of a different feature. The following code segment implements the training and displays the resulting PDF in a density plot.

NWIE=IO;
mnstd = [20 20 1.0];
nanes = {"Z21',"Z2,'Z3},;

gparnl = init_gmx(datal, NMXE, nanes, nin_st d);
for i=1:100,

[gparnl,Q = gmx_step(gparni, datal);

fprintf(’ o6 Total log-likelihood=96\n',i,Q;
end;

gnx_vi ew?(gparmi, dat al, 1, 2);

Refer to table 4.3 for symbol names. The variable nan@s is a cell array that stores the feature names for use in visu-
alization plots. The variable min _std stores the minimum feature standard deviations (See section 4.3.4). The routine
init _gMX.m creates an initial set of parameters. In simple problems, the mixture can be trained by repeated calls
to gmx _step.m as shown. In more difficult problems, it is necessary to do more to insure that there are the right
number of modes and that the algorithm is converging properly. A representative MATLAB program for training is
gnx _trainscript.m , which in turn calls gnix _step.m , the subroutine that actually implements the E-M algo-
rithm. We will discuss the use of gnix _trainscript.m  in more detail in the following sections. Results of running
the above code segment are shown in Figure 4.1. Visualization is accomplished by gmix _vi ea2. m for any desired
2-dimensional plane. A routine gMX _vi enl. m is also available for projecting on one axis using a histogram. We will
describe a complete example in more detail in section 4.3.7.
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Repeat until convergence:

1. Compute data weights. For: =1,..., L:
ai N(zi, i, i) Vi

’ L
Z ai N (zk, p;, 20)
i=1
2. Fori=1,...,Llet:
N
Ozé = Zwi,k.
k=1
3. Update the means. Fori =1,..., L:
N
1
po= Y
k=1
4. Update the covariances. Fori =1,..., L:
1 N
3= o Z wik (ze — ;) (21— 1)
k=1

5. Condition the covariances. There are two methods for doing this, the BIAS and CONSTRAINT methods. The following is the
BIAS method: Fort=1,...,L:

{Ez}n,n :{Ez}n,n+pi, TL:l,...,P,

where p,, is the assumed measurement standard deviation for the n-th element of feature z. The addition of this a priori
information about the feature serves to prevent the covariance matrices from becoming singular. These constants p2 must be
chosen carefully. The topic will be discussed in detail in section 4.3.4. The CONSTRAINT method is described therein.

6. Update mode weights. Fori =1,..., L:

/
o
D1 Ve

Table 4.1: Update Equations for Gaussian Mixtures. This is representative only. Actual implementation requires attention
to numerical issues discussed in the text.

I

I

[ | weight real  nuniver |
| e s e |
| | nean DOMby-1 vector of real nunbers |
| e s e |
| | chol esky covar: OMby-OM  vector of real nunbers |

Table 4.2: GPARM structure definition
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Parameter Name Mathematical Symbol or Description
iel...L], ne[l...P]
GM Parameters
O M=length(gparm.features) P
NMIES =length(gparm.modes) Number of GM components, L
gpar mnodes(i ). wei ght Q;
gpar mnodes(i ). nean n;
gpar mnodes(i ) . chol esky _covar R;
gparmfeat ures(n). min std Pn
gpar mf eat ur es(n) . nane Feature Name
Other Variables
N Number of input samples, N
dat a Training data, z
data ws Data weights v

Table 4.3: Table of correspondence between MATLAB variables and mathematical symbols used in the text.
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Figure 4.1: Results of PDF estimation for the 3-dimensional feature vector z = {z1, 22, 23 }. Data and PDF’s are projected
on the (21, z2) plane. The three cases are for 12, 100, and 500 training samples. The final number of mixture components
(L) was 1, 6, and 8, respectively. The accuracy improves as the number of training samples increases.
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Before iterating, a starting point is needed for the GM parameters. This is handled by init _gnix. m . This routine
inputs some samples of data vectors z1, . . ., Zy, the number of GM terms to use (L), the covariance conditioning param-
eters p,,, and the names of all the features. The GM component means g, are initialized to randomly selected input data
samples. The covariances are initialized to diagonal matrices with large variances. It is important to use variances on the
order of the square of the data volume width | max(z) — min(z)|?. The size of the variances at initialization determines
the data “window” through which each GM component “sees” the data. Too small a window at initialization can lock the
algorithm into the wrong local minimum of the likelihood function. The initial weights «; are set to be all equal.

There are two approaches to determining the number of modes. The first is to sprinkle a large number of modes
throughout the data volume and remove the weak or redundant ones as it converges. The second approach is to start with
just one mode and add modes as needed. The way you determine if a new mode is needed (by splitting an existing mode)
is by a skew or kurtosis measure (kurt.m ). These two methods, called top-down and bottom-up, respectively will be
covered in section 4.3.5.

4.3.4 Implementation of the E-M algorithm : gnix _step. m
Working in the log domain.

Since probabilities can become extremely small, it is necessary to remain in the log-domain. Staying in the log-domain is
a problem when summations are required. Let [; = log N'(z, p;, ;). The summation

L
log S = log [Z ; exp(li)]

i=1

which appears in the first step of the E-M algorithm should be implemented as

L
1ogS:M+log{Z a; exp(l; —M)},

=1

where M = max; [;.

Using the Cholesky Decomposition of X3;.

Instead of computing ¥; directly, we store the Cholesky decomposition of 3; computed using the QR decomposition.
Consider a matrix of column vectors X = [x1,X2,...,Xy]|. These columns correspond to the vectors (z; — ;) in
Table 4.1. A covariance estimate is obtained by forming the matrix 3 = %XX’ , which may be verified is the same as
computing the elements of 3 as follows:

1 N
Eij = N I; LTki Tkj-

But note that if you take the QR decomposition X’ = QR, that

1 1 1
Y¥=_—_XX'=—-R'QQR = —R'R.
N N QQ N
Thus, we see that the QR decomposition of X' is related to the Cholesky factor of 3. There is no reason to ever compute
3 explicitly. Computing 3 requires twice the number of bits of precision as R. A quadratic form can be computed using
R as follows:
237z = ||yl

where
y=2zR7 %

This convention is used in the software (gnix _st ep. m ). More precisely, the matrix t npi dx  stores X’ where the rows of
X' are (z, — p;). The QR decomposition of tmpidx is R, which is stored as a parameter. The subroutine for computing
log N (zk, p;, 2;) is Iqr_eval.m. This routine inputs z1,...,zy, u;, and R;. The mixture (4.1) is implemented by
subroutine Iqr_evp.m.
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Choosing the covariance constraints

If the quantization or additive measurement error variance is known for each feature, this can be used as a guide for
choosing the covariance constraints. But, it can somewhat subjective if nothing is known about the data. A good idea of
what to use for p,, may be obtained by observing the data on 2-dimensional projections. You should select p,, consistent
with the width of the smallest visible cluster of data. For example, by looking at the top of Figure 4.3, p; and ps would
be estimated by taking cross-sections of the visible data clusters along the X and Y axes, respectively. In the bottom of
Figure, we see the result of choosing p,, too large (note the width of the small Gaussian mode is larger than the width of
the corresponsing data cluster). It may be necessary to view the data in all possible 2-D projections before a decision can
be made.

Conditioning the Covariances

Conditioning the covariances is accomplished without explicitly computing 33; as well. As mentioned in Table 4.1, step
5, there are two methods, the BIAS and CONSTRAINT methods. The BIAS method is simpler. On the other hand, the
CONSTRAINT method delivers a better PDF estimate because the covariances are not biased and appears to converge
faster. But, it may interfere with the monotonic increasing property of the E-M algorithm, i.e. that the total log-likelihood
always goes up, but this is still an unresolved issue. Both methods are based on the idea of independent measurement
error in the elements of z. Let D be a diagonal covariance matrix with D, ,, = p?l. The two methods differ in how they
regard D. The BIAS method assumes D is an a priori estimate of 3, while the CONSTRAINT method assumes D is a
measurement error covariance.

The BIAS method is implemented by adding D to the newly formed covariance estimate. But, because we do not
work with 3 directly, it is necessary to implement the conditioning as follows: Let X’ = QR. The upper triangular
matrix R is retained and Q is discarded. Next, we form the matrix as shown below for the case P = 3:

[ 1 Ti2 T13
0 7ro2 723
R 0 0 733
R* = . — .
diag(pn) P1 0 0
0 P2 0
L0 0 s

It may be verified that R*R* is the same as X; with the diagonal adjustments. Next, the QR-decomposition of R* is
computed and the upper triangular part is stored.
The CONSTRAINT method assumes that 3 = 35 + D where X is an arbitrary covariance. Let the eigendecompo-
sition of X be ¥ = VS2V'. Clearly, then
S2=V'E,V+V'DV.

Thus, the diagonal elements of S can be no smaller than the square root of the diagonal elements of V/'DV. Note that V
and S may be obtained from the SVD of the Cholesky factor of 3:

Y =R'R,
and
USV’' =R.
It is implemented in this way in gniX _Sstep.m (tnpvar corresponds to R):
[US V] =svd(tnpvar, 0);

S = diag(9);
S = max(S sgrt (di ag( V * diag(nmnvar) *V)));

tnpvar = U * diag(§ * V;
[q, tnpvar] = gr(tnpvar, 0);

where the last two steps re-construct R, then force it to be upper triangular.
Consider the following example. Data was created using a mixture of 2 Gaussians using the code segment below:
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Figure 4.2: Convergence performance of the BIAS and CONSTRAINT methods. The CONSTRAINT method is consis-
tently faster and achieves a higher log-likelihood every time.

%

% produce data that is from tw Gussian popul ations
%

fprintf(’ Geating data : ’);

N=4096;

neanl{2 3]’;

covl= [2 -16; -1.6 2];
nean2-{ 1. 3 13",

cov2= [.005 O; O .009;

x1 = chol (covl)’ * randn(DMN;
x1=x1+ epnat (neanl, 1, N ;

x2 = chal (cov2)’ * randn(DMN;
X2=x2+ epnat (nean2, 1, N ;

datal = [x1 x2[;

Next, a GM parameter set was initialized with 2 modes with random starting means. Next, gniX _Step.m was iterated
50 times using the BIAS and the CONSTRAINT method. This experiment was repeated 9 times. In each trial, the same
starting point was used for both methods. The results are plotted in Figures 4.2 and 4.3. Note that the BIAS method
has covariances that are biased and appear somewhat larger than necessary. In every case, the CONSTRAINT method
converged faster and achieved a higher log-likelihood.

435 Training

Before training can occur, the GM paremeters must be initialized with a call to init _gmXx , which was described in
section 4.3.3, where we discussed two approaches to training. The top-down approach and bottom-up approaches are
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Figure 4.3: Typical results of training using the BIAS (left) and CONSTRAINT (right) methods. Each method used
pn = 0.5. Note that for the BIAS method, the covariance of the large mode is too fat, but for the CONSTRAINT method
it is correct. For the small mode, the mode size is much smaller than p,, and therefore both methods produce similar

results, as would be expected.

implemented simply by defining either a large number of modes or else just one mode, respectively. The number of
modes is specified by in the arguments of i nit _gnmix. m . But, training is more involved than just repeatedly calling
gnix _step.m . Training involves five operations that are handled by gnix _trai nscript. m

1. E-M algorithm (gnix _step. m ), sections 4.3.2,4.3 4.
2. Pruning modes (gnix _deflate.m ), section 4.3.5.
3. Merging modes (g X _n&rge.m ), section 4.3.5.

4. Splitting modes (gnix _Kurt.m ), section 4.3.5.

5. Determining if algorithm has converged, section 4.3.5.

The operations are discussed in the indicated sections. An overall training script (gnix trainscript.m )is discussed
in section 4.3.5. The user has some control over some parameters used in training. In addition to the initial number of
mixture modes, there are five other parameters that affect the training over which the user has some control.

1. The covariance constraints p,, (and selection of BIAS or CONSTRAINT method).

2. The minimum mode weight used in pruning modes.
3. The threshold used to determine if two modes should be merged.

4. The threshold to determine if a mode should be split.

5. The criterion for determining if convergence has occurred.

These parameters correspond directly to the five steps outlined above and are discussed in the indicated sections.
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Determining the number of modes.

As we have stated, training can start with a large number of modes or just one mode. If the number of modes is too high,
modes will be pruned out as «; falls. If the number of modes is too low, modes will be split by gnix _kurt.m . Once the
number of modes settles out and the likelihood stops increasing, convergence is declared.

The maximum number of modes to start with is about N/(4P) where P is the dimension and N is the number
of samples. If all the modes “share” the data equally, that is 4P samples per mode, a bare minimum. It is generally
not problematic if the number of modes is over-specified since covariance estimates are stabilized by the conditioning
discussed in section 4.3.4. And, as long as the amount of training data can support the number of modes chosen, the
approximation is good. The mixing weight of a mode («;) multiplied by the number of input data samples /N determines
how many input data samples are effectively used to estimate the mode parameters. This is a simple measure of the
“value” of each mode. As long as this product is high enough, the mode is estimated accurately. If «; falls too low, the
mode is eliminated or combined with another. With a combination of covariance constraints, pruning, merging, and mode
splitting, a good PDF approximation can be obtained reliably.

E-M algorithm (gmix _step.m )
The E-M algorithm is explained in section 4.3.4. The calling syntax for gnix _step.m is as follows:

[gparmQ = gmix_step(gpar mx, [bias],[data wts]);

where gparm are the input parameters, X is the normalized input data, bi as (optional) is set to 1 for BIAS method and 0
for CONSTRAINT method, and data w's (optional) allows individually weighting input data. On return, Qis the total
log-likelihood.

Pruning (gmx _deflate.m )

Pruning is killing weak modes (a mode is another name for one of the L mixture components). A weak mode is found by
testing «; to see if it falls below a threshold. We have mentioned that N «; is a measure of how many samples are “used”
by mode i. To keep this quantity above kP, we require «; > kP/N. The quantity kP is called SAMPLES_PER_MODE,
or S_P_Min the software. A good choice for & is about 4, so S.P.M = 4*P.

Pruning is handled by gnix _deflate.m . This program keeps bumping off the weakest mode and re-normalizing
a; sothat ). a; = 1. The calling syntax for gmx _deflate.m is

gparm = gnix_defl ate(gparmnin weight_1, m inwe ight_ all)

It is important that very weak modes be obliterated immediately, but it is important not to massacre lots of moderately
weak modes all at once. So, there are two input thresholds. Only one mode per call to gnix _deflate.m can be bumped
off if it falls below Min _wei ght _1. But a mode is always bumped off if it falls below min weight all .

Merging Modes (gnix _nerge.m )

Merging is creating a single mode from two nearly identical ones. The closeness of two modes is determined by
node _dist.m which works as follows. Let there be two PDF’s p;(x) and po(x). Let there be a collection of points
denoted z;; € X near the central peak of p; (x) and a collection of points denoted z;; € X5 near the central peak of pa(x).
Then we define the closeness metric

H 2162y H p1(zi)

d— log r;€X1 z;€X2
H p1(i) H p2(;)
r;€X1 r;€X2

Notice that this metric is zero when p;(z) = p2(x) and less that zero when p1(z) # pa(x). A threshold (usually about
-1 * DIM) is used to determine if the modes are too close. This threshold should increase (become more negative) as the
dimension goes up.

Since p;(x) and pa(x) are just two Gaussian modes, it is easy to know where some good points for X; and X5 are.
We choose the means (centers) and then go one standard deviation in each direction along all the principal axes. The
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Figure 4.4: The 5 summation points for a 2-dimensional mode. Contour at 2.

principal axes are found by SVD decomposition of R (the Cholesky factor of the covariance matrix). This is illustrated
in Figure 4.4 for a Gaussian mode of dimension P = 2. There is a center point and two points per dimension. Therefore
there are 2P + 1 points per mode, and two modes, thus 4P + 2 points.
If two modes are found to be too close, they are merged. Merging is forming a weighted sum of two modes (weighted
by a1, ag). The new mean is thus
= Q1phy + a2pby 43)
a1 + Qo
The proper way to form a weighted combination of the covariances is not simply a weighed sum of the covariances, which
does not take into account the separation of the means. You need to be more clever. Consider the Cholesky decomposition
of the covariance matrix ¥ = R/R. It is possible to consider the rows of v/P R to be samples of P-dimensional vectors
whose covariance is 3, where P is the dimension. The sample covariance is, of course %(\/]_3)2 R'R = X, Now, given

two modes to merge, we regard P R; and v/P Ry as two populations to be joined. The sample covariance of the
collection of rows is the desired covariance. But this assigns equal weight to the two populations. To weight them by

(651 Q2
agtaz and a1taz

shifted so they are re-referenced to the new central mean. Here is a summary of the method:

their respective weights, we multiply them by . Before they can be joined, however, they must be

1. Let p be as in (4.3).
2. Let R; be the Cholesky factor of 33;,7 =1, 2.
3. Let C; = vP R, each i.

4. Add the vector p; — p to each row of C;, each s.

5. Multiply C; by , / al"jriw ,each 1.

6. Form

Cy
C=1 ...
Cs
7. Then the new covariance is X = % C'C, or take the QR-decomposition of C/ /P as the Cholesky factor of the

new covariance.

The above algorithm is implemented by nerge.m . The subroutine that iterates over all the pairs of modes and calls
nerge.m and node _dist.m isgmx _nerge. m . The calling syntax for gnix _nerge.m is

gparm = gniX_ner ge( gpar mnax_cl oseness)

A good choice for the n@x _cl oseness  threshold is about -1.0 times P, the PDF dimension.
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Splitting modes (gnix kurt.m )

In a method proposed by N. Vlassis and A. Likas [38], the number of modes in a Gaussian mixture is determined by
monitoring the weighted kurtosis for each mode. Putting their equation for one-dimensional z in our notation, Vlassis et

al define .
N Zn— M,
D=1 Wni ( NooN )
R; = N -3
Zn:l Wn,i
where
W N(sz Nia Ez)

T N

2 n=1 N (Zn, 1, 3i)
If |x;] is too high for any mode 4, they split the mode into two. We modify this for higher dimension and use the skew in
addition to the kurtosis. Extending to higher dimension is done by projecting each data sample z,, onto the j-th principal
axis of XJ; in turn. Let zf” 2 (zn, — ;) v;i; where v;; is the j-th column of V, obtained from the SVD of X; (see
discussion in section 4.3.5). Thus, for each 7,

1. Let 4
N ZZL,?'
anl wTL?i ( S )
R4 = -3
Z’f’LV:]. wnvi
2. Let 3
N ZZ; i
En:l Wn i ?
Vi =
21]:/:1 Wn,i
3. Let
mij = |Kij| + il
where

SN wn (21,
n=1 "N, n,t

21]:/:1 Wn,i

Now, if m; ; > 7, for any j, split mode 7. Split the mode by creating modes at

52 =

B= o+ VijSi

and
B=p; —Vi;Si;
where S; ; is the j-th singular value of ;. The same covariance X; is used for each new mode. Of course, the decision
of whether to split or not depends on the mixing proportion «; as well. No splitting occurs if a; is too small.
In the following example, we create data with a gap in it. We begin iterating with a single mode. The kurtosis/skew
algorithm above is able to assign modes until it is finally happy after 8 modes (Figure 4.5). The calling syntax for
gnmx _kurt.m is

gparm = gnmix_kurt(gparmx, [kurt_thresh], [ debug 1);

The optional threshold parameter (default=1.0) allows control over splitting. A higher threshold is less likely to split. The
optional debug parameter, if set to 1, will print out kurtosis and skew information.

Convergence

A good way to monitor the algorithm to detect convergence is to maintain a history list of the last few values of ). If there
is no improvement in () for the duration of the history list, terminate the training. Note that because of pruning, etc, it is
possible for () to go down.
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Figure 4.5: Results of bottom up PDF estimation. One mode (left), two modes (center), and after convergence at 8 modes
(right).

Training script (gmix _trainscript.m )
The script gmix _trainscript.m  may be used with the simple syntax:
gpar gl X_trai nscri pt (gpar mdat a, MA AT;

where gparm is the GM parameter vector, data is the N-by-P input data vector, and M T is the maximum number
of iterations allowed. For added control, additional parameters may be added using the syntax

gpar gl X_t rai nscri pt (gpar mdat a, MA AT,S AVLE SFER MIXE HAS
nax_cl ose, addnodes, kurt _thresh)

The meaning of these parameters are discussed in previous sections.

Training on Huge data sets

If the number of data samples (V) is very large, the training scripts can choke like a chihuahua trying to eat a watermellon
in one gulp. To handle this problem, there are scripts that can chop the watermellon into bite-size chunks and have the
same effect as the whole watermellon. The relevant scripts are gniXx _accumm and gnix _normm . The following
code demonstrates how to use these two routines in place of gnix _Step.m .

L T
% Synopsi s: bite-size repl acenent for

%  [gparmQ = gmx_step(gparmxn);

% The followng code is equival ent to one cal to
% gnix_step. The nunerical behavior is identical.
L
%

gparm = init_gmx(  ..... );

for iteration=l: 10,

%initiaize accumil ators to zero
% at start of each iteration
newnean | ;

newar=[];
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at ot =zer os( nnode, 1) ;
for i=L nnode,
nevwnean{i }=zeros(dim1);
newvar {i }=zeros(di mdin);
end;
gt ot =0;

% Loop over 1000 bite-size  pieces
for i=1 : 1000,

X = ... % get new data natrix
[ newnean, newar , at ot, gt ot ] = ...
gni X_accung gpar m x, newnean, newar , at o t,qgto t);

end,

% finalize the iteration
gparm = gniX_nor nfgpar m newnean, newar , at ot );
end,

4.3.6 Conditional PDFsand Conditional Mean using Gaussian Mixtures

Gaussian mixtures afford a convenient way to generate conditional PDFs and conditional mean estimates.

Conditional Estimation in general

Let the data vector z be composed of two parts x and y:

[3]

We have available training samples of z, however in the future, only y will be available from which we would like to
compute estimates of x. We will shortly see that the GM density facilitates the computation of the conditional mean
or minimum mean square error (MMSE) estimator of x. The conditional mean estimator is the expected value of x
conditioned on y taking a specific (measured) value, i.e.,

% = B(xly) = / x p(xly) dx

X

The maximum aposteriori (MAP) estimator is given by
X = max p(x|y).
X
Both the MAP and MMSE estimators are operations performed on p(x|y). Which estimator is most appropriate depends
on the problem. Suffice it to say that the distribution p(x|y) expresses all the knowledge we have about x after having
measured y.
Estimation using Gaussian Mixtures

The GM representation of the density has the a remarkable property that p(x|y) can be computed in closed form. This is
especially useful in visualization of information. For example, it is useful to show a human operator the distribution of
likely x after y is measured. If desired, the MMSE can be computed in closed form as well. The MAP estimate can also
be computed, but that requires a search over x.

Let the GM approximation to the distribution be given by

p(x,y) =) aipi(x,y)- (4.4)
By Bayes rule,
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where p(y) is the marginal distribution of y. We now define p;(y) as the marginal distributions of y given that y is a
member of mode 7. These are, of course, Gaussian with means and covariances taken from the y-partitions of the mode ¢

mean and covariance p,, 3;.
.= ’ 2 = ’ ’
H [ Fy.i } ' [ Byri Byyi

Then,
1 pi(x,y)
pPXly) = ——= ) qipily
(xly) p(y) 2 omi() pi(y)
4.5)
1
= — Qi Pil\y )Di\ X[y
Sy p i)
where p; (x|y) is the conditional density for x given y assuming that x and y are from that certain Gaussian sub-class 4.

Fortunately, there is a closed-form equation for p; (x|y) [39]. p;(x|y) is Gaussian with mean

Ei(x[y) =ty ; + ZayiZ,, (¥ — 1y0)- (4.6)
and covariance
covi(x[y) = Towi — TayiZ,,  Sye.i- 4.7)

Note that the conditional distribution is a Gaussian Mixture in its own right, with mode weights modified by p;(y) which
tends to “select” the modes closest to y. To reduce the number of modes in the conditioning process, one could easily
remove those modes with a low value of p;(y) (suggested by R. L. Streit).

This conditional distribution can be used for data visualization or, to easily calculate the conditional mean estimate,
which is a by-product of equations (4.5),(4.6),(4.7):

E(xly) = / p(xly) x dx

1
= S amly) [ iy x i (48)

p(y)

= }%Ziami (¥)Ei(xly)

MATLAB implementation
The subroutine gnix _condX. m is used to generate the conditional distribution. The syntax is
grarn2 = gmx_condx(gpar mx_i dx, y_i dx, y)

where gparm is the GM parameter vector for p(z), X_i dx are the indexes indicating which elements of z constitute x
(they can be any elements), and similarly for y i dx .
The subroutine gniX _cngan. m uses gnix _condx. m to compute the conditional mean of x. The syntax is

xhat = gnmix_cnean(gparmx_i dx, y_i dx,y)

where all inputs are identical to gnix _condX. m . The one exception is that input ¥ can include any number of samples
of y. The dimensions of y are N-by-P where N is the number of samples and P is the dimension of y.

Example of Estimation: Beam Interpolation

Assume that beam intensity values are available from a set of M uniformly spaced (in direction) sonar or radar beams. A
target exists somewhere in the span of the M beams, yet we do not know its center location, nor do we know the width
of the response to the signal (as in a broadband system with frequency-dependent beamwidth). We assume for simplicity
that the amplitude is known, yet in principle, amplitude can be another unknown. Thus, there are two parameters we seek
to estimate: direction d and beamwidth w. This problem normally requires a search in the d, w plane for best match (as in
maximum likelihood). Using GM, we solve the problem without a search, yet achieve performance comparable to ML!
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Conditional of d,w given data generated with d=2,w=18

WDTH

Figure 4.6: Condition distibution of d (THTA) and w (WDTH) given a sample of b computed for d = 2, w = 18 with no
additive noise.

Let the beam pointing directions be d1, . .., dj;. Let the beam intensities b = {b; ... bas } be modeled by
!
w

where n; is a noise term (we use Gaussian noise in the simulation and CR bound analysis). This is a Gaussian beampattern
with 3 dB width w.

A sample size of 4096 was created using d and w selected from uniform distributions in the ranges [-10,10], [15,50],
respectively. Parameters were A = 50, 02 = 1, M = 5, {#;} = {—20,-10,0,10,20}. A GM model p(b, d, w) of 12
modes was trained on the data. To illustrate the ability to create conditional distributions, p(d, w|b) was computed for a
sample of b computed for d = 2,w = 18 with no additive noise. The result appears in Figure 4.6. The visual effect of
this figure is to say to the operator that there are no other values of interest except the peak.

It is also possible to condition on d or w. The conditional distribution p(b, w|d) was computed ford = 0 and d = —5.
these plots are shown in Figures 4.7,4.8. Note that the beam output values have distributions symmetric about the value
of d, as expected. Note also the wider spread of values on outer beams due to the variations in w.

Estimates of d, w were obtained using formulas (4.8),(4.6). To determine bias, uncorrupted (no noise) values of b
were created for a range of d for w fixed at 20, and for a range of w for d fixed at 2. These two graphs appear in Figures
4.9,4.10. In each case, the bias error is plotted as a function of the variable parameter. Bias is clearly a function of
the operating point. It is also a function of the number of modes and the convergence point of the GM approximation
algorithm. Random error was determined by choosing a specific value of d,w and running 300 trials with independent
noise added to b. The result of 300 trials is shown below.

True Value | Mean Variance | CR Bound
d |2 1.9435 | .0550 .0493
w | 18 18.003 | .09756 .0945

Results of 300 trials, A = 50, ¢2 =1, M = 5.
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Distr. conditioned on d=0
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Figure 4.7: The condition distibution p(b, w|d) marginalized on each dimension of b for d = 0.

Distr. conditioned on d= -5
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Figure 4.8: The condition distibution p(b, w|d) marginalized on each dimension of b for d = —5.
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Bias of d for fixed w (w=20). 12 modes
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Figure 4.9: Plot of d — d for noise-free data with w = 20.

Bias of w for fixed d (d=2). 12 modes
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Figure 4.10: Plot of & — w for noise-free data with d



4.3. PDF ESTIMATION USING GAUSSIAN MIXTURES 19

The results were in close agreement with the CR bound. Strictly speaking, the CR bound does not apply since the
conditional mean estimator is biased for a fixed d, w (it is unbiased for random d, w conditioned on b), however, the CR
bound is useful for comparison purposes.

CR Bound analysis
The log-PDF of the data b is

1 M

1
Inp(b;d,w) = —3 In(270?) — 3922 i

2
4
[bi — Aexp {—0.346(d - dfﬁ H :
where o is the variance of the additive independent Gaussian noise. The components of the Fisher Information Matrix
(FIM) for PDF parameters ¢;, ¢; are given by

& Inp(b; di, ;)
P, =B (SRR
Let the FIM be given by
| Faa Faw
F(d7w)_|:Fwd Fww:|.

A standard CR bound analysis [40] produces

0'2 i=1

2
Fu=2 (0.346%) S (@ = di) exp(—wn))?

A? 8\ =M 2
Fopw = = <0'346F> Zi:l ((d — d;)? exp(—w;))

A? 8\ M 2
Fiow = Fpa = —5 <0.346E> > ((d—di)? exp(—w;))

wo? i=1

where w; = 0.346(d — d;)? 2. The CR bound matrix is given by C(d, w) = F~*(d, w).

4.3.7 An Example Script for Gaussian Mixtures

Script gmix _exanpl e.m is designed as a teaching example for use of the software. All the basic functions as well
as some handy utilities are demonstrated. Refer to the program listing for the discussion that follows. After typing >>
gnx _exanpl e at the MATLAB prompt, you will see the graph of Figure 4.11 and the program will pause. This is a
two-dimensional “point scatter” diagram of the data that we will fit a Gaussian Mixture to. Refer to the program listing to
see how this data is created. Pressing any key initializes the Gaussian Mixture parameters with the following 3 lines:

nanes={’ BNGY' ,” TI ME };

mnstd =1[.1 .1];

NVTE=L;

gpar =i ni t_gm x(dat al, NWIE, nan@s, nin _std) ;

The first line assigns names to the two dimensions. We have chosen to call them "ENGY” and "TIME”. The next
line assigns the p,, parameters, as discussed in section 4.3.4. The N training data samples are stored in the P x N
variable dat @l . The last line creates the parameter structure gparni . Since the algorithm starts with just a single mode
(NME=L1 ), the approximation is poor (Figure 4.12). Pressing a key again executes the training with a 150-iteration limit:

gpar ni=gni x_trai nscri pt (gpar mi, dat a 1,150 ;

The log likelihood (Q) is printed out at each iteration along with the number of modes. Log likelihood would monotoni-
cally increase, if not for the pruning, splitting, and merging operations. Use of the CONSTRAINT method of covariance
conditioning will also affect the monotonicity. It may be verified, however, that calls to gnix _Step.m with BIAS=1
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Figure 4.11: Samples from a Gaussian mixture.
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Figure 4.12: The initial Gaussian mixture approximation.
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Figure 4.13: Gaussian mixture approximation after convergence.

will result in monotonic likelihood increase, with the possible exception of numerical errors at the very end of the con-
vergence process. Whenever mode splitting occurs, the message “Adding a mode ..” is printed. Whenever mode merging
occurs, the message “Merging ...” is printed. Because in this example, we have initialized with just one mode, mode
splitting is more likely that merging, although is is possible that after several modes have been split, they can be re-
merged. This causes a “fight” between gnix _kurt. m which tries to split, and gnMix _n@rge. m , which tries to merge.
In gmix _trainscript.m it is arranged to allow time between splitting and merging so that the E-M algorithm can
settle out. Otherwise, newly merged modes could be quickly split, or newly split modes could be quickly merged.

Once gmix _trainscript.m  converges, you should should see the graph on the left of Figure 4.13. These plots
are produced by gnmix _view2. m . This utility is perhaps the most useful visualization tool for high-dimensional PDF
estimation. It allows the data scatter plot to be compared with the marginalized PDF on any 2-dimensional plane.

Marginalization is a simple matter for Gaussian mixtures. Let z = [z1, 22, 23, 24]. To visualize on the (22, 24) plane,
for example, we would need to compute

P(Z2,Z4)=/ / (21, 22, 23, 24)dz1d23.
zZ1 z3

Instead of integrating out 21, 23, marginalization requires only stripping out the first and third elements of each mode mean
vector, and the first and third rows and columns of each mode covariance, then computing the resulting Gaussian mixture!
Because we work with the Cholesky decomposition of the mode covariances, it requires stripping out the necessary
columns, then doing a QR decomposition of the result. This stripping operation is performed by gmix _strip.m . The
syntax would be:

gparmout = gmix_strip(gparmin, [2 4);

where the second argument indicates that we want to retain the second and fourth dimensions. Using this method,
the marginal distribution of any 2-dimensional plane is easily computed. Stripping is handled automatically by
gnix _view2. m .

Press once more and the intensity plot is replaced by a contour plot of the modes (on the right of Figure 4.13. The
contour plot is obtained by the fourth argument to gfiX _vi eén2. m . The complete syntax of gMiX vi ew2. m is

[ p, Xp, yp] =gm x_vi ew2( gpar ni, dat al, i dxlid x2,[d oell ip],[M],ipl ot);

where i dx1, 1dx2 are the indexes of the dimensions requested and do _€l | i p is an optional argument that, if equal
to 1 (default=0), produces a contour plot of each mode instead of an image. Mis an optional parameter that defines
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10

Figure 4.14: One dimensional PDF plots; Marginal PDF’s compared to histograms.

the number of resolution cells for each dimension of the plot (default=60). The optional parameter i pl ot  can be set
to zero if only the outputs p,Xp,yp are wanted. These outputs provide the output PDF grid that can be plotted by
i nagesc(xp, yp, p) . In the example, since the data is 2-dimensional to begin with, there is no dimension reduction
performed by gnix _view2. m .

Information about the Gaussian mixture may be printed by calling gnix _show m . This information, which includes
the mode weights, means, and determinants, can be directly compared with Figure 4.13. The true means are (2,3) and
(.5,.5), and the true determinants are 1.44 and 1.0, respectively. Generally, if the algorithm results in just 2 modes, the
parameters agree very closely. The inclusion of a third or fourth mode makes it difficult to see the correspondence. But,
nevertheless, the PDF approximation is good as evidenced by the intensity plot. You can run gniX _exanpl e.m again
and each time the result will be a little different. But always, the intensity plot and the PDF approximation is excellent.

Press the key once more and Figure 4.14 will be plotted. This figure shows the 1-dimensional marginals for each
dimension displayed along with the histograms. It is the result of calling gnix _vi esl. m . The calling syntax is

[ pdf, xp, h, xh] =g x_vi ewl(gpar m dat a Jidx,n bins) ;

If called without any output arguments, the plot will automatically be generated. Input i dX is an array of indexes for the
dimensions desired. For more than one index, multiple plots are produced. Input “nbins” is the histogram size.

Press a key once more and Figure 4.15. This figure demonstrates the function gnix _cond (See Section 4.3.6) which
creates conditional PDFs from the original Gaussian mixture. Rather than using Bayes rule explicitly to compute the
conditional PDF of x given that y = o,

_ pwy ({E, yO)
py(Yo)

it solves for the Gaussian mixture parameters of p(z|y = yo) in closed form so that you can later evaluate p(x|y = yo) at
any point z, or else examine the parameters of the mixture. The figure shows the PDF evaluated at four values of .
Press a key once more and Figure 4.16 is shown. This figure plots the original data again in green and some synthetic
data created by gmix _nakedata.m in red. This demonstrates a convenient aspect of GM approximation: generating
synthetic data is simple.
Press a key once more and Figure 4.17 appears. We now have two data sets. We will now build a classifier using
Gaussian mixtures. The first step is to train a second parameter set on the second data set. This time, we will use the

p(zly = vo)
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Figure 4.16: Original data (green) and synthetic data (red).
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Figure 4.17: A second data class in yellow. The first data set in magenta.

top-down approach by initializing with 15 mixture modes. This time, there will be alot of merging and purging going on,
but less splitting! Press a key again and the training starts. When complete, you should see Figure 4.18.

To classify, it is necessary to compute the log-likelihood of test data. This is done using | gr _evp. m . The name of
the subroutine was not thought up logically, but evolved from (l)og-likelihood (ev)aluation from the (p)arameters, and the
fact that the (QR) decomposition is involved in the covariance estimates! The calling syntax is

loglik = lgr_evp(gparn, datal, 0);

If the third argument was 1, the routine would return a matrix of log-likelihoods where each column is from one of the
mixture modes. The zero forces the modes to be combined with the apropriate weights into the GM approximation. The
ROC curve is shown in Figure 4.19. Refer to the listing for details.

4.4 PDF Estimation usng HMMs

The hidden Markov model (HMM) is a powerful statistical model that closely approximates many phenomenon found in
nature, such as human speech. While a very powerful statistical model, a single HMM cannot easily act as a classifier
between a wide variety of signal classes. Instead, it is best to design them specifically for each signal type and feature
type. A versatile HMM software toolbox for MATLAB is also described.

441 IntroductiontoHMM’s

The fundamental assumption of an HMM is that the process to be modeled is governed by a finite number of states and that
these states change once per time step in a random but statistically predictable way. To be more precise, let Pr(q; = )
be the probability that the system transitions into state ¢ at time ¢. The Markovian assumption says that Pr(q; = 1)
depends only on ¢;_1, the true state at time ¢ — 1. Furthermore, if this distribution does not depend on the absolute
time ¢, then the state probabilities can be described completely by a fixed state transition matrix A = {a;;} where
a;j = Pr(q: = jlgt—1 = ). Figure 4.20 illustrates a hidden Markov model (HMM). At each time step (time running
from left to right), the Markov model is in one of the five possible states. According to the Markovian assumption, the
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Figure 4.18: Result of top-down approach: Trained GM approximation of second class.
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Figure 4.19: ROC curve for two-class problem.
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Figure 4.20: A hidden Markov model (HMM). As the state transitions occur from sample to sample, the observer, cannot
see the states directly. Instead, the observer makes observations whose PDF depends on the state.

probability that the model is in state j at time ¢ is governed only by the transition probability a;;, where ¢ is the true state
at time t — 1. The Markov model is “hidden” from view by the observer who can only observe measurements z, whose
PDF is governed by the true state at each time step. The mathematics of the HMM are reviewed in section 4.4.2.

How HMM'’s are used.

The Baum-Welch algorithm is an algorithm for estimating the parameters of the HMM from training data. The HMM is
a complete statistical model for the series of measurements z1, zo, . ..,z and therefore defines the probability density
function p(z1, 2o, . . ., z7). Therefore, once the parameters have been determined, it is easy to use the HMM as a classifier.
Furthermore, it is also easy to generate typical” measurement sequences. This aspect of the HMM has always fascinated
me since in principle, it would be possible to train an HMM on a specific human speaker, then create totally random
“jibberish” that sounded like the same speaker. I have always wondered if certain politicians are already using such a
device. For further information on HMM’s, the reader is referred to the tutorial by Rabiner [41].

The role of HMM’s in class-specific classifiers

In classifying signals, The hidden Markov model (HMM) has a major advantage but one serious drawback. The advantages
is that complex processes may be modeled using low-dimensional models, thereby allowing the HMM to be trained using
a realizable amount of data. The low dimension is achieved by dividing (segmenting) the data into small time steps from
which low-dimensional measurements are made. Although the total observation space is large (the number of steps times
the dimension of the observations), the dimension of the observations may be kept low.

But the problem with HMM’s is that they need to be carefully tailored for a specific type of random process. Not only
is the segment size chosen specially, but so is the observation space (the feature set). It is difficult for an HMM designed
for speech recognition to operate well for other types of processes except speech. If separate HMM’s are used, the
likelihood values cannot be directly compared in a classifier. The class-specific method solves this problem by allowing
two or more HMM’s to be used as detectors for their respective model class, while solving the problem of comparing the
outputs optimally.
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442 Thestandard HMM

Following the notation of Rabiner [41], there are 7" observation times. At each time 1 < ¢ < T, there is a discrete state
variable ¢; which takes one of N values ¢; € {51, 52, -+, Sn}. According to the Markovian assumption, the probability
distribution of ¢;41 depends only on the value of ¢;. This is described compactly as a state transition probability matrix
A whose elements a;; represent the probability that g; 1 equals j given that ¢; equals ¢. The initial state probabilities are
denoted 7;, the probability that ¢; equals .S;.

It is a hidden Markov model because the states ¢; are hidden from view; we cannot observe them. But, we can observe
the random data O; which is generated according to a PDF dependent on the state at time ¢. We denote the PDF of O,
under state j as b;(Oy).

The complete set of model parameters that define the HMM are

A= {mj,aij,b;}
The Baum-Welch algorithm calculates new estimates A given an observation sequence O = 0103 --- Or and a previ-

ous estimate of A. The algorithm is composed of two parts: the forward/backward procedure, and the reestimation of
parameters.

Using Gaussian Mixtures for b;(0O).

It will be convenient to model the PDF’s b;(O;) as Gaussian mixtures:

M

m=1

where )
N(O, pj, Ujm) = (2m) P2 Uy | =2 exp {_5(0 — 1) Uj0 (O — ij)} ’
and P is the dimension of O. We will refer to these Gaussian mixture parameters collectively as

A
bj = {¢jm» Mjpm, Ujm }-

Forward/Backward Procedure

We wish to compute the probability of observation sequence O = 0103 - - - O given the model A = {7;, a;;,b;}. The
forward procedure for p(O|A) is

1. Initialization:
Oél(i)zﬂ'i bl(Ol), ].SZSN (49)

2. Induction:

N
aey1(f) = [Zat(i)aijl bj(Oty1), 1<t<T-1
i—1 (4.10)
1<j<N
3. Termination:
p(OJA) = ZaT 4.11)
The backward procedure is
1. Initialization:
Br(i) =1 (4.12)
2. Induction:
Zazg i(Ot41) Bir1(9), t=T-1,T-2,---,1 @.13)

1<i<N
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Reestimation of HMM Parameters

The reestimation procedure calculates new estimates of A given the observation sequence O = 0105 - - - Op. We first

define
£(i,7) = — a]tv(z) aij bj(Or41) Bev1(d) @.14)
DD (i) @iy bj(Or41)Bra (4)
i=1j=1
and
N
2 () = &, 5)- (4.15)
j=1
The updated state priors are
ti = m(i). 4.16)
The updated state transition matrix is
T-1
th (7’7 ])
dij = t;i - . 4.17)
Z“/t(i)
t=1
Reestimation of Observation PDF’s
In order to update the observation PDF’s, it is necessary to maximize
T
Q; =Y wilogh;(Oy).
t=1
over the PDF b;, where
we = ];%(J) pd) @.18)
> auli) Bili)
i=1

This is a weighted maximum likelihood (ML) procedure since if w;; = c;, the results are the strict ML estimates. The
weights wy; are interpreted as the probability that the Markov chain is in state j at time ¢.

Reestimation of Gaussian Mixture Parameters

If b;(0O) are modeled as Gaussian mixtures (GM), one could simply determine the weighted ML estimates of the GM
parameters. Since only iterative methods are known, this would require iterating to convergence at each step. A more
global approach is possible if the mixture component assignments are regarded as “missing data” [42]. The result is that
the quantity

T M
Qi =Y m(j,m)logh;(Oy) (4.19)
t=1 m=1

is maximized, where

) Cim N(O¢, i, Ujm
e(Gym) = we; | =7 (Os:#jm: Usm) (4.20)

chk N(Ota ll'jka Ujk)

k=1
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The weights ~;(j, m) are interpreted as the probability that the Markov chain is in state j and the observation is from
mixture component 1 at time ¢. The resulting update equations for ¢y, , p;,,,, and U, are computed as follows:

T
Z’Yt(]am)

L =1

Cm = 7

Zzﬂft(jv l)

t=11=1

4.21)

Note the similarity to (4.2). This means that the algorithms designed for Gaussian mixtures are applicable for updating
the state PDFs of the HMM.

T
Z’Yt (.]7 m) Ot
_ =1

jm T (422)
Z’Yt (.77 m)
t=1

T
Z ryt(ja m) (Ot - iu’jm) (Ot - p’jm)/
Uj,, = = (4.23)

T
27t (.]7 m)
t=1

Note that the above equations do not treat the problem of constraining the GM covariances. This needs to be addressed
(see section 4.3).

Structured State Transition Matrices

TBD

Multiple Records

It is fairly straight-forward to extend the Baum-Welch algorithm to the case when multiple observation sequences

(“records”) are available. Rather than O1, Os, ..., Or, we have O7, 05, ..., 07, 7 =1,2,..., R. For each record,
1. Run the forward-backward procedure on OF, O3, . .., O7. to produce oy (i), 37 (i),

2. Compute &/ (i,7),t =1,...,T, asin (4.14).
3. Compute v; (4) as in (4.15).

Then, we have

Updating the Gaussian mixture parameters requires defining
e ) B ()

tj — N
> ai(@) Br (i)
i=1

3
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which leads to +; (j, k) through (4.20). We then have

and

... et cetera.

443 MATLAB toolbox for HMM

We will demonstrate the HMM toolbox by example.

An HMM example

We now describe a simple problem that we will analyze using the HMM tools. Consider the HMM with the following
parameters:

8 1 1 1
A= 1 8 1 m= |0
1 .1 8 0

The output of the HMM is a time series with a 16-sample step size (i.e. the state is allowed to change every 16 output
samples). The output is Gaussian with mean and variance depending on the state as follows:

State Mean Var

1 0 1
2 0 4
3 2 1

For each 16-sample segment, the sample mean and standard deviation are computed. This constitutes a 2-dimensional
feature vector that is the observation space of the HMM.

Creating feature data for training.

To test the tools, we need to generate HMM output data from the above-defined model. Execute the script file
hnm_exanpl . m . The program calls the function hnin naketestdata. m  which generates the 2-dimensional fea-
ture data as described above. The call is

[x,istart, nsanp] =hnm naket est dat a( A , Anre cord, nsteps ,NN- EAT);

There are 10 records of length 400 segments, thus X is size 2-by-4000. The auxiliary outputs i start, nsanp are vectors
containing the starting samples and lengths of each of the ten records. This makes it possible to locate individual records
within the matrix. The script then plots the data using the command

plot(x(1,:),x(2:),"b.");
xI abel (" MEAN ) ;
yl abel (* STV );

and waits for keyboard input. The resulting figure is shown in Figure 4.21.
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Figure 4.21: Scatter plot of the HMM output features. The three states can be seen individually. Compare the plot with
the table of means and standard deviations.

Initializing HMM parameters
Next, initialize a set of HMM parameters using the commands.
nanes={" MEAN , ' STDV };
mn_stdg.1 1
NSTATES=3;
NVIE=10;
par nF ni t_hrmgx, NSTATES NMIE, nanes, ni nstd );

This first two commands define the feature names and the minimum standard deviations for Gaussian mixture estimation
(See Section 4.3). The initial HMM parameters are obtained by using init _hnmm which creates a uniform state
transition matrix A and prior probability 7. The PDF of the feature vector in each state is approximated by Gaussian
mixtures. The starting point for the Gaussian mixture parameters are obtained by the functioninit _gmx. m described
in the previous sections.

Training using the Baum-Welch algorithm

To run 10 iterations of the Baum-Welch algorithm, use the commands:

N T=100;
[0 parm = hmmreest(parm X, istart, nsanp, NT);

The algorithm prints the total log likelihood at each iteration. At the end, it prints the final state transition matrix and
initial probabilities. These should be close to the correct ones.

Viewing the state PDF’s

To view the HMM PDF’s, execute the command

hrmvi ew(parmx, 1, 2) ;
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State 1 State 2 State 3
T T T T

1 E - 0 1 E E - 0 1
MEAN MEAN MEAN

Figure 4.22: PDF plots of the three state PDF’s after convergence. Aside from some minor outlier modes, the PDF
estimates correctly approximate the true PDF’s. It is easy to see which PDF corresponds to which state of the simulated
HMM.

This produces the three state PDF plots as shown in Figure 4.22. The last two arguments are the indexes of the two dimen-
sions to be viewed. Since there are only two dimensions, the only choice is 1,2 (See a description of gnix _vi ew2. m
in Section 4.3). Look at the figure and try to figure out which PDF corresponds to state 1, 2, and 3. If a bad starting point
was used, it may not have worked.

Annealing

No matter how many iterations one makes, the bad solution will never converge to the correct. But there is a method
that is usually successful in nudging a solution away from a bad stationary point. This we call annealing and is done
by expanding the covariance matrices of the PDF estimates and by pushing the state transition matrix and prior state
probabilities closer to “uniform”. The utility ann _hnm does this. Attempt to find a “bad” stationary point by re-running
the above sequence until one is found. Next, use the commands

par nFann_hmmgparm2, 1. 2);
[l og_pdf _val, parm} = hnmreest (parm x, istart, nsanp, NT);
hnmvi ew(parmx, 1, 2) ;

This should correct the problem. Try it to satisfy yourself that it works. The second argument is the expansion factor for
Cholesky factors of the covariance matrices and the third is a parameters greater than 1.0 that determines how much the
state transition matrix is annealed.

Creating Synthetic Observations

Creating sequences of observations corresponding to an HMM parameter set is simple. The command

[ %2, stat es] =hnm synt h_nex( par m 100) ;
X2=x2';

creates a record of 100 observations from the HMM defined by parameter set parm. The output vector is of “nsamp”
rows and number of columns corresponding to the feature dimension. It has to be transposed to agree with the normal
convention. The states are passed to the output as variable “states”.

Estimating the states: the Viterbi algorithm.

The Viterbi algorithm [41] estimates the most likely state sequence. The command:

states=viterbi (parmx);
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Outputs the most likely state sequence corresponding to data X. As a test, try the following commands:

[x2, st at es] =hnm synt h_nex( par m 100) ;
X2=x2';
est_states=viterbi (parmx2);

Compare the estimated states with the actual.

Classifying using the trained HMM parameters

The log-likelihood output of the train _hnm program can be used as a classifier. If the number of iterations is specified
as zero, a shortened version of the program is run, only running the forward procedure.

[0 parm} = hmmreest(parm X, istart, nsanp, O0);

Since the program finds the total log likelihood for each record passed to it, the total likelihood will be the sum of the
elements of (.
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